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UNCERTAINTY MODELS FOR PHYSICALLY REALIZABLE INERTIA DYADICS
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ABSTRACT

This paper proposes new probability-distribution functions (PDFs) for the inertia dyadic.  Representing uncertainty
in rigid-body rotational dynamics with these PDFs preserves constraints on the moments and products of inertia that
arise from the underlying physics but which conventional approaches violate.  Specifically, we propose representing
uncertainty in terms of parameters closely related to the radii of gyration and in terms of Euler parameters (for the
orientation of the principal axes with respect to a set of body-fixed reference coordinates).  The physical constraints
on the moments and products of inertia are shown to be satisfied for any distribution of the radii of gyration and if
the Euler parameters are given a radially constrained Gaussian distribution.  Although unconventional, this
uncertainty structure is shown to be broadly applicable.  We consider the example of spacecraft/launch-vehicle
separation analysis for an early-stage spacecraft program, when mass properties are ill defined.  Here, misplaced
conservatism in requirements can be costly.  The proposed PDFs are shown to guarantee physically realizable
results, while more naïve approaches yield nonphysical behaviors.

INTRODUCTION

Successful spacecraft designs accommodate uncertainty in the inertia properties of the system and its
components.  These parameters are difficult to measure precisely even when the components of the spacecraft have
been fully integrated, let alone to predict with much confidence in the early stages of the design when,
inconveniently, much of the engineering analysis that requires inertia estimates occurs.  An obvious example of the
use of statistical inertia models is attitude-control performance in the presence of plant uncertainty.  However, no
less important are other uses of these models, including nonlinear Monte Carlo simulations, mass-properties bounds
used early in the product design cycle, and generic representations of a satellite product line as part of specifying
interfaces with subcontractors, such as launch-vehicle providers.  These applications often attempt to accommodate
large uncertainties in mass properties, so large that (we argue) the way they are specified risks introducing artificial
and costly conservatism.

A standard approach to the problem of representing inertia uncertainty is to treat each of the six unique entries
in an inertia matrix as independent random variates, each of which exhibits some completely uncorrelated
uncertainty.  This approach has the virtue of simplicity, and for small uncertainties it is—if not correct—at least
difficult to distinguish from the truth.  Instead, we propose a rigorous approach to uncertainty modeling in rigid-
body rotational dynamics that not only recognizes the interdependency of the inertia parameters but also allows
arbitrarily large uncertainties that do not violate the physical principles from which the inertia matrix is derived.

INERTIA DYADICS

We consider an inertia dyadic I
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in terms of some orthogonal basis vectors bi in a body-fixed frame B.  The inertia matrix I contains the scalars in this
vector expression, for some choice of bi: 
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in which the Iii are known as the moments of inertia and are given by a Riemann integral over M, in terms of a
differential mass element dm and that element’s location (x1, x2, x3) in a reference coordinate system determined by
the bi
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The Iij are known as the products of inertia and are given by
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Since I is positive definite, it can always be diagonalized.  The similarity transform A, nothing more than a
collection of the eigenvectors of I, is a proper-orthogonal matrix that describes the orientation of the principal
coordinates P with respect to B such that the principal (or diagonal) inertia matrix is
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i.e., 
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Criteria for Physical Realizability

Because I is real and symmetric, it contains no more than 6 unique parameters.  These parameters can be taken
to consist of the Iii and the Iij or, equivalently the three principal moments of inertia Ii and the attitude representation
A.  A proper-orthogonal matrix is a member of the SO(3) rotation group and can be represented with three
parameters2.  Thus, the Ii taken together with three attitude parameters comprise a different, although equally
complete, set of 6 parameters.  The parameters in the inertia matrix obey certain constraints, all of which are evident
from the above definitions:

• The moments of inertia of ATIA must be positive, regardless of the matrix A that rotates the inertia matrix
(whether A contains the eigenvectors of I or represents some other proper-orthogonal matrix).

• The sum of any two moments must be less than or equal to the third.  This principle is known as the
triangle inequality for inertia matrices, because the sides of a triangle also obey this rule. 

• The products of inertia are limited by the simultaneous application of both of the above constraints.

We now derive a simple test for these conditions.  We rewrite the Ii in terms of three independent scalars, Kk,
such that 
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We conclude from equation (7) that the principal inertia matrix will obey the triangle inequality if all of the Kk take
on positive values.  From equation (3)

2
k k

M

K x dm≡ ∫ .  (9)

Therefore, they are related in a simple way to the radii of gyration.  Furthermore, we now have a simple way to
assess the physical realizability of a given matrix.  Because the physics are independent of the choice of coordinates,
any matrix with negative Kk includes physically unrealizable moments of inertia, products of inertia, or both, in
every possible coordinate system.

UNCERTAINTY

The inertia dyadic is independent of the choice of the bi.  The components Iii and Iij may change, but not I.
Therefore, uncertainty in the inertia dyadic must be independent of the inertia matrix, which is merely a realization
of the dyadic in some reference coordinates.  Having recognized this fundamental principle, we can separate
uncertainty into two decoupled problems: the uncertainty in the principal moments of inertia and uncertainty in A.

Picking Principal Inertias from a Distribution

We require a method for choosing a random inertia-matrix variate whose components conform to the limits of
physical realizability.  Simply picking three numbers from an arbitrary probability distribution does not guarantee
that the resulting values are legitimate principal moments of inertia.  To this end, we assign uncorrelated zero-mean
stochastic processes wk to the square root kk of each Kk:
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Squaring each value then results in a positive number, regardless of the variance.  If the distribution in kk is
Gaussian, for example, the resulting Kk can be described with a Chi-squared distribution3.  We have already
demonstrated that any inertia matrix derived from these parameters is positive definite.  Transforming into the
random principal moments of inertia îI  involves only
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Extracting the statistics of some sampled inertia matrices for use in this model requires only fitting a Chi-squared
distribution to the three kk that characterize each sample.
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Uncertainty in Principal Coordinates

Devising a successful algorithm for picking uniformly random attitudes is not a trivial matter.  One reason is
that applying a uniform distribution to each of the attitude parameters in a given parameterization (such as Euler
angles, Rodrigues parameters, and direction-cosine matrix components) is generally inappropriate: doing so
introduces biases that are evident when one transforms from one parameterization to another4.  Several recent
studies address the issue of picking random attitudes.  Shuster points out that the distribution of attitude should be
independent of the attitude representation5.  He derives probability density functions for several attitude
parameterizations and shows that they comply with this axiom.  Like Shuster, most authors consider the problem of
uniform attitude distributions, often with an eye toward Bayesian attitude estimation.  In addition to Shuster’s, other
successful algorithms for picking uniformly distributed attitudes include the igloo and masonry maps6, iterative
selection of quaternions based on a box criterion4, and picking points on a unit four sphere4,7.  The latter technique
provides uniformly distributed unit quaternions.  It consists of selecting normally distributed vectors in R4 (i.e.
selecting four uncorrelated, normally distributed real numbers) and enforcing the unity-magnitude constraint.  This
simple algorithm may be the most convenient one for numerical simulation because the coding is minimal and
requires neither trigonometric computations nor conditional statements.

Representing a uniformly distributed inertia matrix may be of interest in some applications.  For example,
statistically demonstrating an adaptive attitude-tracking algorithm that purports to require no knowledge of the
inertia matrix might require arbitrary plant models8.  However, other distributions are required if one wishes to
represent the statistics of rigid-body mass properties that exhibit central tendencies.  For this situation, we turn to the
concept of a radially constrained Gaussian (RCG), first proposed by Nicewarner and Sanderson9.  Their approach
provides a way to represent general orientational uncertainty for both two- and three-dimensional problems.  They
also incorporate positional uncertainty via the homogeneous transform10.  The general technique begins with an n
dimensional vector x with a probability density function
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where n is the dimension of the random vector, Σ  is the covariance matrix, and x̂  is the mean.  One can enforce
the constraint of unit length by decomposing k components of x into hyperspectral coordinates
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and normalizing by dividing by r.  Here, 
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This transformation ( ),x g rΦ=  from a vector Φ  (comprising the k-1 angles θ and the n-k spatial components s)
has as its Jacobian
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the determinant of which can be shown to be
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positive for all values of r and θk-1 over the manifold described by equation (14).

The transformed probability distribution of the Euclidean Gaussian becomes
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Here, ( )rf r  is the marginal PDF
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Letting ( ) ( )e g xΦ Φ= − , where the mean x  is assumed always to lie on the constraint manifold, leads to the PDF
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This distribution is that of the probability of a measurement of the hyperspectral parameters Φ .  However, it is
Gaussian on the vector x transformed from these parameters when the trigonometric terms from the Jacobian
determinant are incorporated.  Nicewarner and Sanderson also point out that the mean and covariance are coupled
because the covariance matrix is applied to the transformed vector in Euclidean space, not to the radially constrained
manifold.  They propose eliminating this effect, if necessary, by rotating the covariance matrix via 
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So that 
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Our objectives do not extend to the case of nonzero spatial coordinates s.  For random unit quaternions the
transformation is
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The Jacobian determinant for [ ]1 2 3
TΦ θ θ θ=  is 
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and the RCG PDF for a unit quaternion is therefore

( ) ( ) ( )2 1
1 2

1sin sin exp
2

Tf c e eΦ θ θ Φ Σ Φ−⎡ ⎤= −⎢ ⎥⎣ ⎦
. (26)

This result provides a means of representing uncertainty in the principal coordinates of an inertia matrix when there
is some central tendency.  Uniformly distributed attitudes do not offer this feature.

As an example, we pick 2000 random unit quaternions and represent them graphically as variation in unit
coordinate axes.  Figure 1 shows the distributions for
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Figure 1.  Random Attitudes for an Example Mean and Variance, Depicted
as Variation in Orthogonal Reference Axes

APPLICATION

This study is motivated in part by the unavailability of meaningful inertia-uncertainty models, particularly for
use in the simulation of intricate dynamical processes that do not lend themselves readily to closed-form solutions.
Monte Carlo simulation is often favored for analyses of this type11.  For such problems, many statistically
representative simulations are run and statistical inferences drawn from the result.  Just how the statistics of the
inputs are related to those of the outputs is rarely clear, although often intuitively obvious behaviors can be
identified.  For such an application, the complexity or inconvenience of statistical models is rarely an issue because
the input parameters are picked numerically.  Instead, the correctness of the statistics is paramount.  Furthermore, for
systems whose complexity merits statistical simulation, the computational effort involved in picking inputs from
distributions is likely far less than that devoted to integrating the equations of motion.  We argue that the statistical
models proposed in this study proposes have a place in such analysis, although they are more cumbersome than the

traditional application of Gaussian statistical models to each moment and product of inertia.  The purpose of the
following example is to show how the proposed uncertainty model can improve the output statistics of an intricate
dynamic process, as suggested in Figure 1, which justifies their use.

Dynamical System
(Monte Carlo Simulation)

Stochastic Inputs Stochastic Outputs

Figure 1.  Arbitrary Dynamical System that Transforms Stochastic Inputs into Stochastic Outputs



Separation Analysis

Spacecraft/launch-vehicle separation is an example of a statistically intensive problem.  Separation refers to the
maneuver in which the launch vehicle’s upper stage disengages from its spacecraft payload, imparting some desired
dynamical condition.  Commonly the maneuver is designed so that the spacecraft inherits a roll angular rate—that is,
an angular velocity about the launch vehicle’s longitudinal axis.  In some cases, such as the Ariane 44LP / Intelsat
VII separation, the upper stage separates the spacecraft with virtually no roll rate but, with the help of unbalanced
springs, imparts a transverse spin instead12.  The ensuing dynamics must typically meet requirements related to
mechanical clearance (no recontact of the spacecraft and the upper stage), spin speed, nutation, and sun- or earth-
relative attitude.  For example, too large a nutation angle can tilt the solar panels away from the sun, affecting power
safety; also, large-angle attitude motions can interrupt communications with the ground, leading to difficult and
unsafe operations.  Although the rigid-body equations of motion are simple enough, subtleties in the design of
separation springs and clamps, umbilical connectors, and variation in the separation-system performance generally
demand statistical simulation.

The example we consider here includes an oblate upper stage and a spacecraft (its payload) to be given a spin
rate about a transverse axis, as was the case for Intelsat VII.  Figure 3 is a schematic of such a system.
 upper stage spacecraft 
8

We assume four massless separation springs.  Each imparts a force between the two bodies at fixed points; i.e., as
the bodies separate, these points remain fixed on their respective bodies.  The springs are initially compressed, and
once a spring reaches its undeflected length, contact at its endpoints is assumed to be lost permanently.  Two springs
on one side of the spacecraft store more energy than do the other two, resulting in a couple that imparts opposite
torques to the spacecraft and the upper stage.  The state derivatives integrated in the simulation are
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Figure 3.  Upper Stage and Spacecraft

separation springs
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The superscript N indicates a derivative taken with respect to a Newtonian, or inertial, frame.  The subscripts P and
L indicate parameters associated with the payload and the launch vehicle, respectively.  c is the position of the
payload body mass center relative to an origin fixed in N, and m is the body’s mass.  The ki are the stiffnesses of the
four separation springs.  The xi are vectors parallel to the spring lines of action.  The length of each xi is the
deflected length of the spring (so that when the magnitude goes to zero, no force is applied).  δi,max is the initial
deflection of each spring, which is assumed to be positive (not zero).  The ri are vectors from a body’s mass center
to the fixed points on that body at which the separation springs apply forces.  P/Nω  is the angular velocity of a frame
P, fixed in the spacecraft, relative to N.  Similarly, L/Nω  is the launch-vehicle rate in N.  I  is the inertia dyadic of
the body for its mass center.

Velocities are integrated from these accelerations, and position from these velocities.  In the case of angular
displacement, the angular velocity of each body is integrated via a quaternion, taken to be the identity rotation at the
beginning of the simulation.  The resulting body-to-inertial attitudes are used to resolve the vectors in equation (29)
into components in convenient coordinate systems.  Table 1 lists the mean values for these system parameters.  In
the simulations, only the inertia dyadics are varied.  In practice, all of these parameters, and many more we have
omitted from this simulation, would be subject to randomization.

Table 1.  Simulation Parameters

Parameter Units Value
5000 20 2
20 4000 -50IP kg·m2

2 -50 3000
6700 0 20

0 6700 -20IL kg·m2

20 -20 2000
mP kg· 10000
mL kg· 4000

k1, k2 N/m 1×105

k3, k4 N/m 3×104

δi,max m 0.1
cP (t=0) m [ 0  0  1 ]T

cL (t=0) m [ 0  0 –1 ]T

P/Nω (t=0) rad/sec [ 0  0  0 ]T

L/Nω (t=0) rad/sec [ 0  0  0 ]T

The covariance of the RCG quaternion for both IP and IL is chosen to be 

0.00002 0 0 0
0 0.0006 0 0
0 0 0.0006 0
0 0 0 0.6

Σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (30)

Because the first three quaternion components include so little variation (a standard deviation of about 2.8o in total
angle), variation in the fourth will largely be constrained out on the spherical manifold.  The covariance in the radii
of gyration are chosen as
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which reflects greater certainty in the launch-vehicle inertia parameters than in the spacecraft’s.  The implication is
that the spacecraft’s design is less mature at the phase in its design at which this analysis is performed.
Alternatively, this analysis might be meant to capture the general behavior of a commercial spacecraft product line
for a given launch vehicle.  The mean and variance of the principal-axis parameters is shown in Figure 1.

The behaviors of interest here are those associated with the payload’s post-separation spinning attitude
dynamics: wobble, nutation, and coning.  Given an intended spin axis in reference coordinates s=[1 0 0]T, we define
wobble as the angle between this axis and the nearest principal axis of the inertia matrix.  More precisely, for
appropriately sorted eigenvectors, 

[ ]1 2 3A a a a= , (32)
the wobble angle φ is 

[ ]( )1
1cos 1 0 0 aφ −= . (33)

For unforced motion, nutation refers to the behavior of the angular-momentum vector as it orbits a relative
equilibrium13 in body axes.  Also called free precession, this phenomenon can occur only about an equilibrium
corresponding to the axis of maximum or minimum inertia.  In an inertial frame, it is the principal axis that
precesses around the fixed angular momentum.  In either case, the nutation angle θ for an inertia dyadic I and an
angular velocity vector ω is

1 1cosθ − ⎛ ⎞⋅ ⋅
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a I ω
I ω

. (34)

When the transverse principal moments of inertia (i.e. those other than spin, in this case 2 and 3) are unequal, the
nutation angle varies in time and depends on the proximity of the angular-velocity vector to these transverse
principal axes.  It is a simple matter to show that θ is at a maximum when the angular velocity vector is closest to
the intermediate axis.  By manipulation of expressions for kinetic energy 2E = ⋅ ⋅ω I ω  and angular momentum

= ⋅H I ω , one can derive closed-form expressions for these extrema:
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Again, these expressions are meaningful only when the spin moment of inertia is not the intermediate.  The cone
angle ψ is the combined effect of these two.  It is the angle between the intended spin axis and the angular
momentum vector:

[ ]1 1 0 0
cos

Iω
ψ − ⎛ ⎞
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠I ω

. (36)

The wobble angle is a measure of the dynamic imbalance—the (mis)alignment of the inertia matrix with respect
to the reference coordinates.  For that reason it is a purely kinematic parameter.  Nutation and coning, however,
involve the dynamics.  Another parameter that is a measure of the inertia properties is the inertia ratio σ, sometimes
known as the roll-to-pitch ratio: 
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This parameter indicates not only proximity to intermediate-axis spin (for which σ=1) but also determines the
nutation frequency14.

Results

The results of 2000 random simulations are shown in the following figures.  First we show the results for the
proposed approach to inertia statistics and then those for a more naïve approach.  Figure 4 includes two histograms:
one for inertia ratio and another for wobble angle.  The central values, from the data in Table 1, are 1.408 and 1.144o

respectively.  The variation in these parameters, as we have explained, is only a function of the distribution in the
principal moments of inertia.  Figure 5 shows histograms of the payload and launch-vehicle inertia matrices for this
approach.  Figure 6 shows wobble, nutation, and coning.

  

Figure 4.  Inertia Ratio and Wobble Angle Distributions

 

Figure 5.  Inertia Distributions for the Payload and the Upper Stage
(Inertia-Matrix Ordering, Symmetric Entries Omitted)
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Figure 6.  Separation Dynamics for the Proposed Uncertainty Model

A more naïve method, and a quite common one, is simply to apply Gaussian distributions to the nominal inertia
parameters.  For as meaningful a comparison as possible, we use the numerically computed standard deviation in the
moments and products of inertia shown in Figure 5 as a description of the inertia statistics, but with no effort to
weed out physically unrealizable matrices.  Table 2 lists the standard deviations used in this more traditional model.

Table 2.  Fit of Gaussian Statistics to Physically Realizable Inertia Matrices
(Inertia-Matrix Ordering)

42.8518 54.3897 133.1674
54.3897 38.6060 10.8535

Standard Deviation in
IP components

133.1674 10.8535 37.3169

24.1620 10.3127 322.0596
10.3127 8.8193 140.7391

Standard Deviation in
IL components

322.0596 140.7391 27.298
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These standard deviations seem large, and they are if they are viewed independently.  However, with the constraints
among the inertia entries, these results exactly, though indirectly, describe uncertainty in the three principal
moments and the three-parameter attitude description.  These interrelationships are not captured when one merely
randomizes the entries as if they were uncorrelated.  The result of such randomization is a considerably larger
variation in wobble angle and inertia ratio, as Figure 7 shows.  Figure 8 shows the inertia distributions.  Some
components appear to vary more than they in Figure 4, but when they do it is because a Gaussian model does not fit
the data well.  In particular, the bimodality and one-sidedness effects evident in Figure 4 are not captured.

 

Figure 7.  Inertia Ratio and Wobble Angle Distributions

 

Figure 8.  Naïve Inertia Distributions for the Payload and the Upper Stage
(Inertia-Matrix Ordering, Symmetric Entries Omitted)
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Figure 9.  Separation Dynamics for the Naïve Uncertainty Model

Most important, though, is the fact that the naïve method results in considerably more variation in the separation
dynamics for the same mean and standard deviation.  This example makes clear that the proposed method can help
extract unrealistic conservatism from some dynamics analyses.

CONCLUSIONS

We have proposed a method of representing uncertainty in inertia dyadics that is consistent with the rules
governing inertia matrices.  In this method, one picks random inertia matrices via normally distributed radii of
gyration and normally distributed quaternions subject to a radial constraint in R4.  The distributions are not
particularly intuitive, although they are fundamentally physical.  They may prove useful in numerical simulation
methods, such as Monte Carlo analysis.  In the case of the statistical separation analysis shown as an example, this
approach lead to results that reduce nutation and coning compared to a naïve approach for identical means and
standard deviations in the inertia-matrix components. 
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